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Promise of Learning Enabled Systems
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Adaptive Video Streaming: Congestion Control: DDoS Detection:
Pensieve [SIGCOMM’17], Fugu [NSDI’19], ... Aurora [ICML’19], Orca [SIGCOMM’20]... GRU-RNN [NetSoft’18], ...
Gelato [CONEXT’24] Sage [SIGCOMM’22] LUCID [IEEE TNSM’20]
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Cluster scheduling: Query Optimization:
Decima [HotNets’18], Gavel [SIGCOMM’20]... Neo [VLDB’18], Bao [SIGMOD’21]...

Sinan [SIGCOMM’22] Lero [VLDB’23]



The Need for Explainability

* Operators are hesitant to deploy ML
solutions despite high performance in lab

* Difficulty:
* Understanding
* Debugging
* Trusting




Surrogate Functions as Explanations

Interpretable




Feature-level Explainers
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Decision Trees Local Linear Regression Game-theoretic
Metis [SIGCOMM’20] LIME [SIGKDD’16] SHAP [KAIS’14]

Trustee [CCS’22]



The Vision: Intuitive Understanding
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. f avoidance due
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Reality of Current State-of-the-Art

Buffer t-1 < .911; Chunksize t-1
< .051; Quality t-1 < .664;
Chunksize t-3 < .070; Buffer t-2
<..463; Chunksize t-56 < .114;
Chunksize t-7 < .230; Next
Chunk t+5 Quality 10 < .417;

Why is the
» video only
© 480p here
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Reality of Current State-of-the-Art
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Limitations of Feature-level Explainers in Systems

* Salient features as explanations
* Can involve low-level system features
* Miss trends and inter-feature interactions
* Difficult to decode



Key Ildea: Concepts as Units of Explanation

* Concepts

* Human-understandable attributes that capture
controller and environment characteristics

e Can capture intricate patterns, trends, and
behaviors in systems
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Key ldea: Surrogate Concept-Based Model

Controller Model

x > Opaque Neural Network > y
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Key ldea: Surrogate Concept-Based Model

Concept Weights
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Concept-Based Explanation

Why is the
= video only
480p here

Why isn’tthe
% video
1080p?

Extreme Network Degradation -

Recent Improvement in Network

Switch to higher quality after
startup

Weight
Factual Explanation

Avoiding Large Quality
Fluctuations

Moderate Network Throughput

High Network Throughput is absent

Weight
Counterfactual Explanation
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Training Pipeline: 1. Base Concept Generation

Using Large Base Concepts
research docs, Languag 1. Concept 1
identify concepts e Model 2. Concept 2
Operator gmalyl Conc.:.épt n
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Training Pipeline: 2. Input Description Generation
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Describe the Large Input
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Training Pipeline: 3. Target Concept Similarity Generation
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Training Pipeline: 4. Training Concept Mapping

Concept Similarities

Embeddin Concept
g Network | Mapping gl B N ”

Multi-dimensional
classification

[y
o
deo Siz
© o
N wu
(93] o

Concepts Similarity

Quality (SSIM dB)
S
Sizes (Mb
o
N
(9]

< Base Concept Similarity
07 4 oy 000 1. Volatile Network Conditions 0
- Time . Time - 2. Falling Buffer 2
o4 _
E /\/f\/ g’lo\z\,‘ n. Medium Throughput 1
LU
T R %% -7 -4 -1
Time Time

17



Training Pipeline: 5. Training Linear Output Mapping

predictions
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Training Pipeline
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Experimental Settings

* LLMs evaluated:
* Closed-source: OpenAl GPT 40
* Open-source: Llama 3.3 70B

* Baseline:
* Trustee [CCS’22]

Adaptive Bitrate Streaming Gelato [CONEXT’24] Reinforcement Learning
Congestion Control Aurora [ICML19] Reinforcement Learning
DDoS Detection LUCID [IEEE TNSM’20] Supervised Learning
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Fidelity

Adaptive Bitrate 0.946 0.949 0.982 0.983
Streaming
Congestion 0.215 0.235 0.932 0.936
Control
DDoS 0.991 0.977 0.996 1.000

Detection
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Use Cases

1.
2.
3.
4.

Debugging
Data shift detection
Concept-level retraining

Dataset expansion
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Use Cases: Debugging
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Use Cases: Distribution Shift Analysis

Gelato Datasets
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Use Cases: Concept-Aware Retraining

Adaptive Bitrate Streaming Performance
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Summary

* With Agua, we propose to move beyond feature-level explainability and
towards an operator-aligned concept-level view

* Agua builds a surrogate concept-based model, attaining high fidelity and
interpretability across

* Congestion control, DDoS detection, adaptive video streaming

* Agua works with neural network controllers using supervised, unsupervised,
and reinforcement learning

* We demonstrate Agua’s ability to intuitively enable

* Debugging, data shift detection, retraining, dataset expansion

* Code: https://github.com/NetSAIL-UCl/agua
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