Agua: A Concept-Based Explainer for Learning Enabled Systems

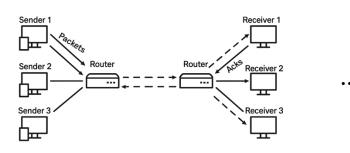
Sagar Patel, Dongsu Han, Nina Narodystka, Sangeetha Abdu Jyothi

UCIrvine

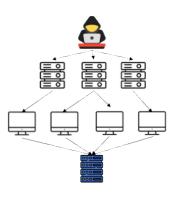
0

Promise of Learning Enabled Systems

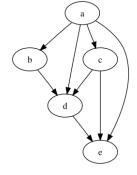
Adaptive Video Streaming:
Pensieve [SIGCOMM'17], Fugu [NSDI'19], ...
Gelato [CoNEXT'24]



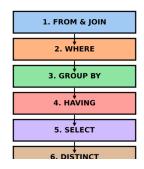
Congestion Control:
Aurora [ICML'19], Orca [SIGCOMM'20]...
Sage [SIGCOMM'22]



DDoS Detection:
GRU-RNN [NetSoft'18], ...
LUCID [IEEE TNSM'20]



Cluster scheduling:
Decima [HotNets'18], Gavel [SIGCOMM'20]...
Sinan [SIGCOMM'22]

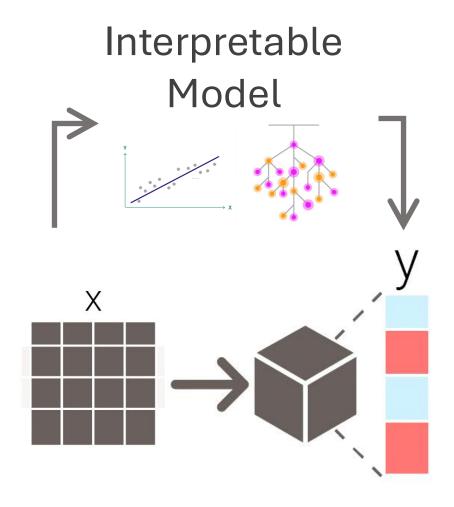


Query Optimization: Neo [VLDB'18], Bao [SIGMOD'21]... Lero [VLDB'23]

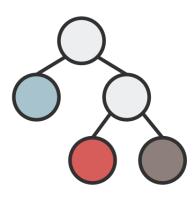
The Need for Explainability

- Operators are hesitant to deploy ML solutions despite high performance in lab
- Difficulty:
 - Understanding
 - Debugging
 - Trusting

Surrogate Functions as Explanations

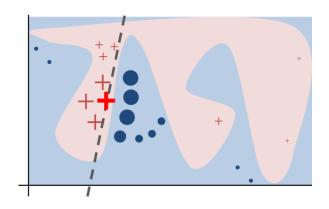


Feature-level Explainers



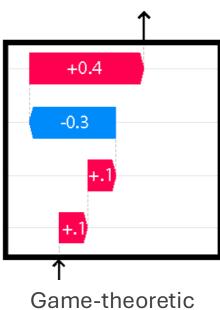
Decision Trees

Metis [SIGCOMM'20] Trustee [CCS'22]



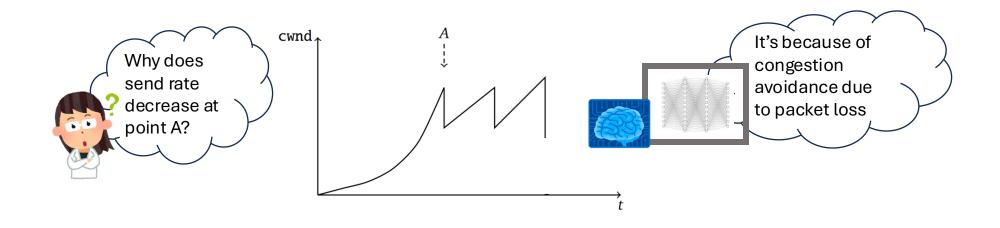
Local Linear Regression

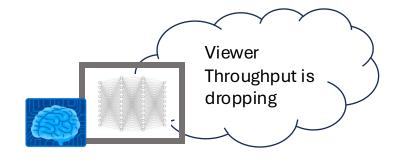
LIME [SIGKDD'16]



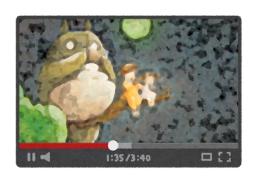
SHAP [KAIS'14]

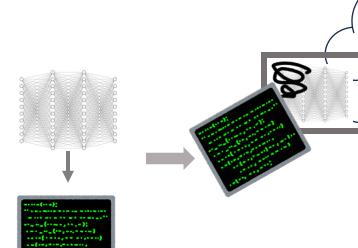
The Vision: Intuitive Understanding





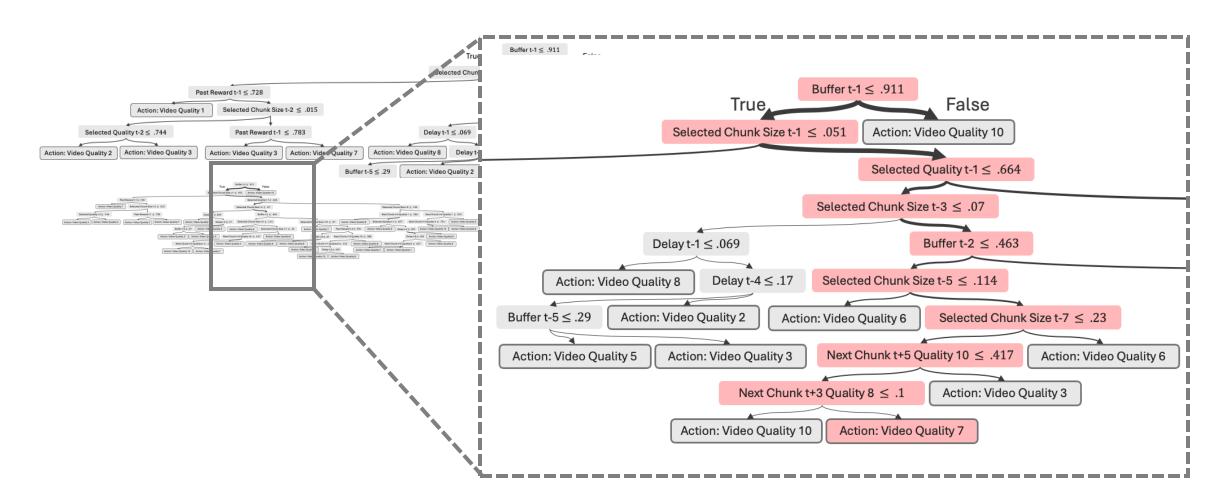
Reality of Current State-of-the-Art





Buffer t-1 \leq .911; Chunksize t-1 \leq .051; Quality t-1 \leq .664; Chunksize t-3 \leq .070; Buffer t-2 \leq . 463; Chunksize t-5 \leq .114; Chunksize t-7 \leq .230; Next Chunk t+5 Quality 10 \leq .417;

Reality of Current State-of-the-Art



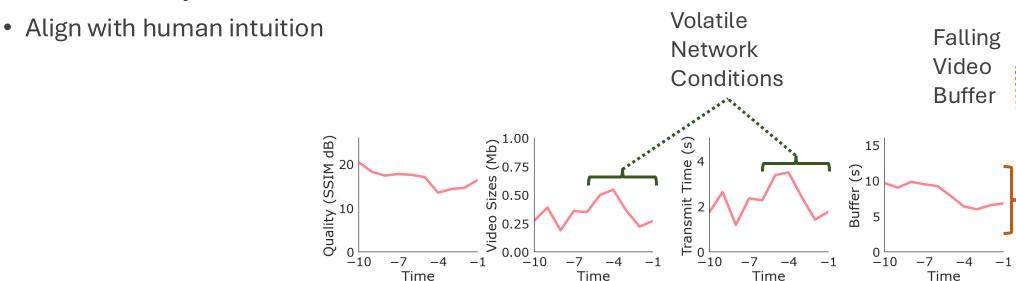
Limitations of Feature-level Explainers in Systems

- Salient features as explanations
 - Can involve low-level system features
 - Miss trends and inter-feature interactions
 - Difficult to decode

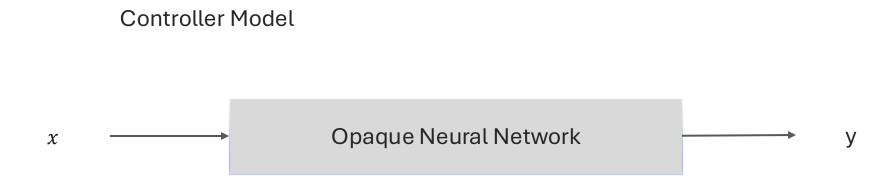
Key Idea: Concepts as Units of Explanation

Concepts

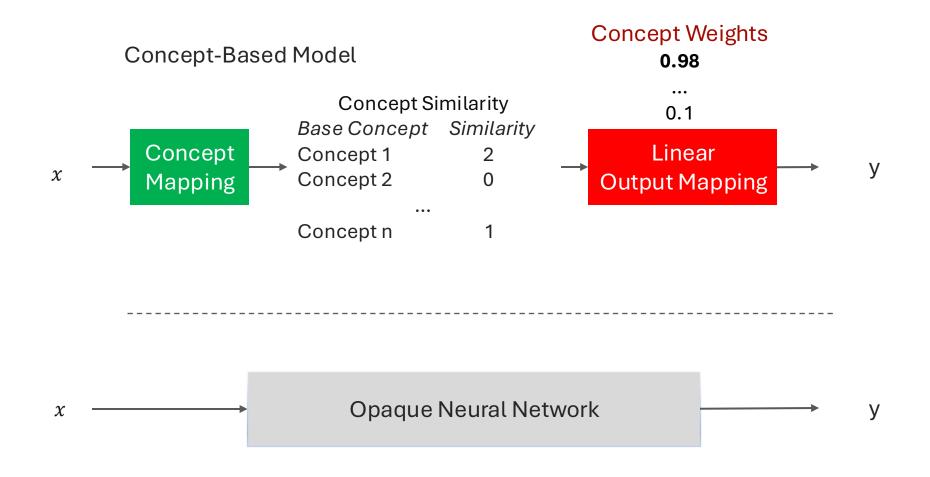
- Human-understandable attributes that capture controller and environment characteristics
- Can capture intricate patterns, trends, and behaviors in systems



Key Idea: Surrogate Concept-Based Model



Key Idea: Surrogate Concept-Based Model



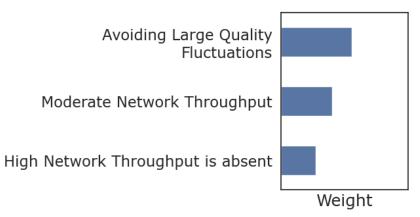
Concept-Based Explanation

Recent Improvement in Network

Switch to higher quality after startup

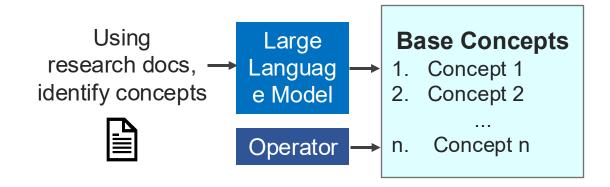
Weight

Factual Explanation



Counterfactual Explanation

Training Pipeline: 1. Base Concept Generation



Adaptive Bitrate Selection: A Survey

Yusuf Sani, Andreas Mauthe, and Christopher Edwards

A comprehensive survey on machine learning for networking: evolution, applications and research opportunities

Raouf Boutaba^{1*}, Mohammad A. Salahuddin¹, Noura Limam¹, Sara Ayoubi¹, Nashid Shahriar¹, Felipe Estrada-Solano^{1,2} and Oscar M. Caicedo²

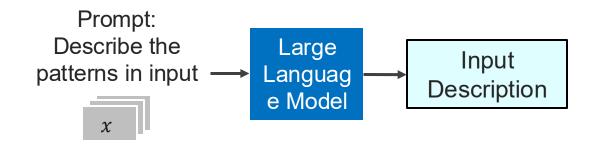
Base Concepts

1. Volatile Network Conditions

2. Falling Buffer

n. Medium Throughput

Training Pipeline: 2. Input Description Generation



(gp WISS) Atline 20 (1.0

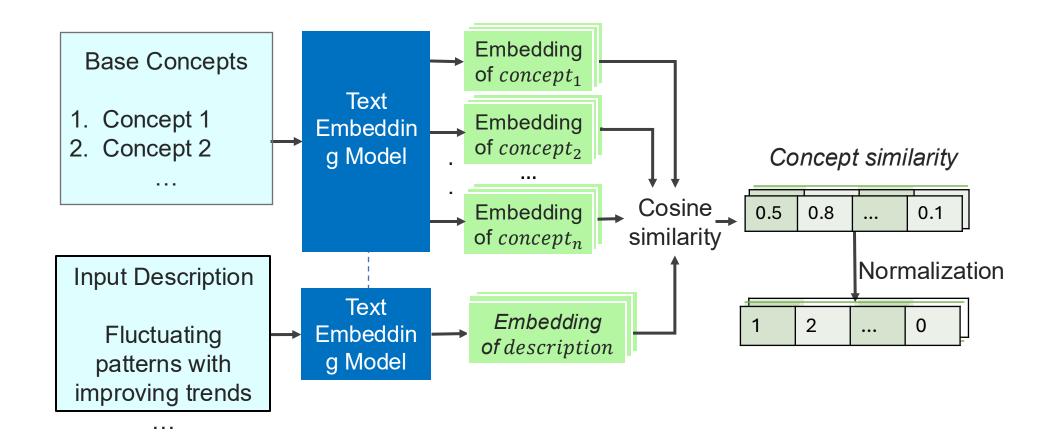
Time

Time

Network conditions:

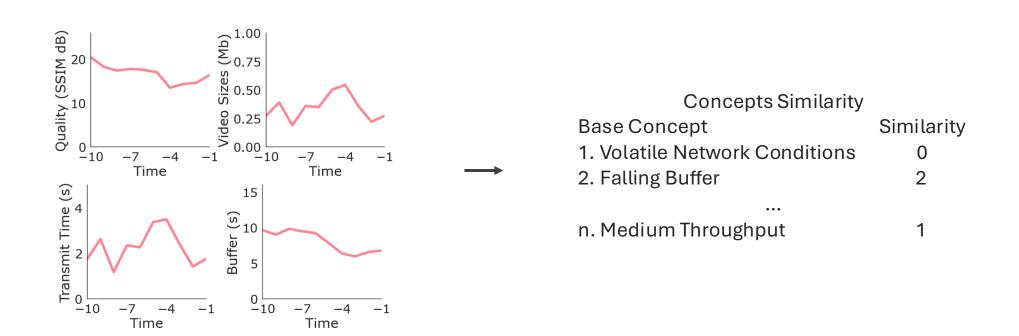
- Initially starts off with a fluctuating pattern, as observed from the features "Transmission Time of Chunk."
- In the middle...
- Overall, the trend is improving, indicating the presence of stable network conditions.

Training Pipeline: 3. Target Concept Similarity Generation

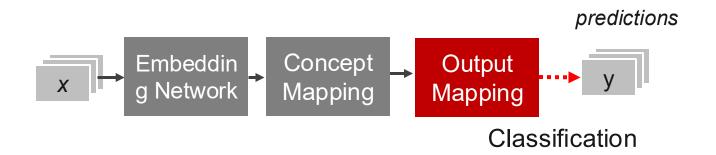


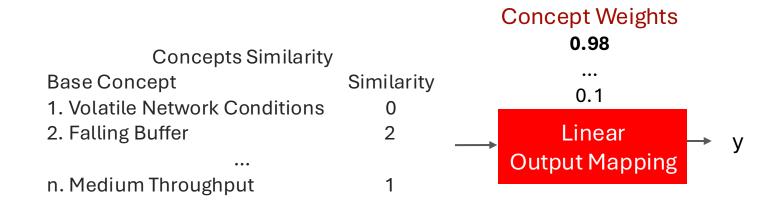
Training Pipeline: 4. Training Concept Mapping

Multi-dimensional classification

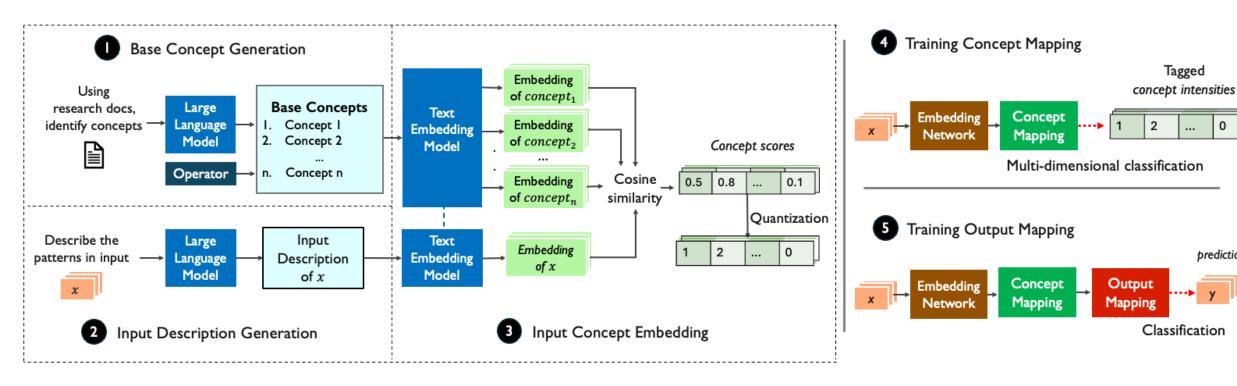


Training Pipeline: 5. Training Linear Output Mapping





Training Pipeline



Tagged

bredictions

Experimental Settings

• LLMs evaluated:

• Closed-source: OpenAI GPT 40

• Open-source: Llama 3.3 70B

• Baseline:

• Trustee [CCS'22]

Application	Controller	Learning Paradigm	
Adaptive Bitrate Streaming	Gelato [CoNEXT'24]	Reinforcement Learning	
Congestion Control	Aurora [ICML'19]	Reinforcement Learning	
DDoS Detection	LUCID [IEEE TNSM'20]	Supervised Learning	

Fidelity

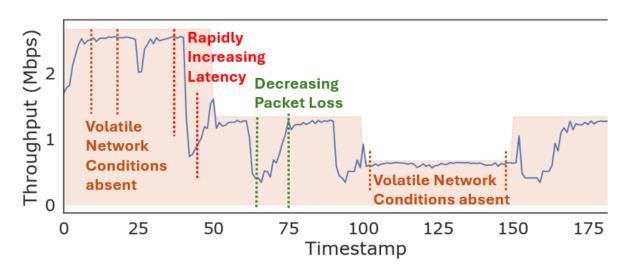
Application	Trustee		Agua	
	Full	Pruned	Llama 3.3 70B	GPT 40
Adaptive Bitrate Streaming	0.946	0.949	0.982	0.983
Congestion Control	0.215	0.235	0.932	0.936
DDoS Detection	0.991	0.977	0.996	1.000

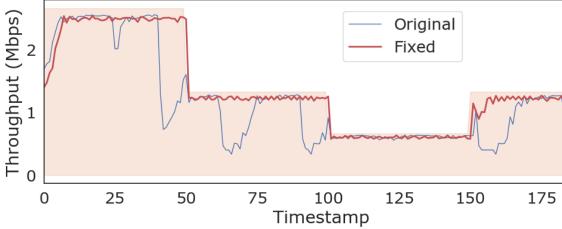
Use Cases

- 1. Debugging
- 2. Data shift detection
- 3. Concept-level retraining
- 4. Dataset expansion

Use Cases: Debugging

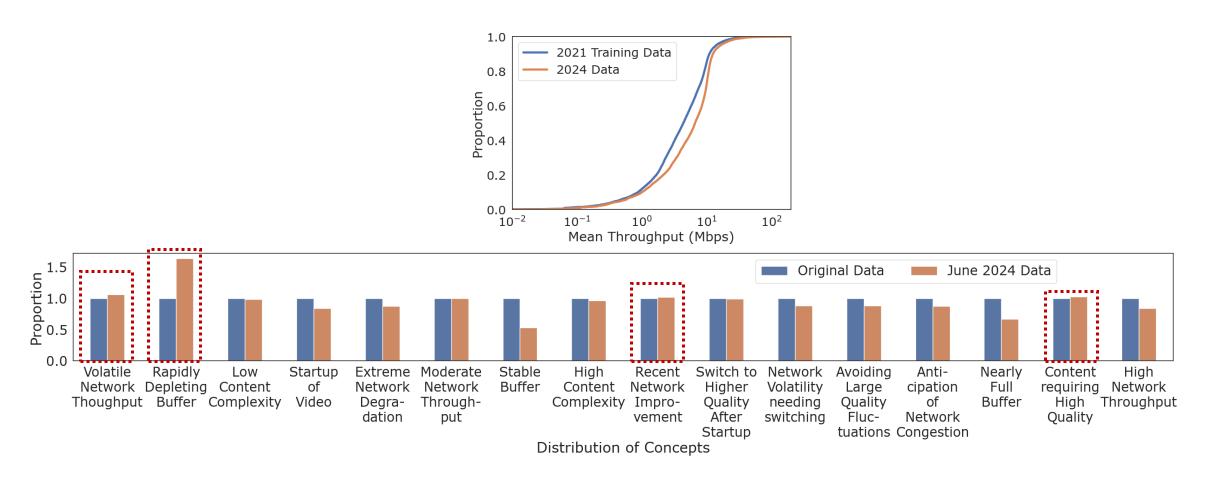
Aurora Throughput





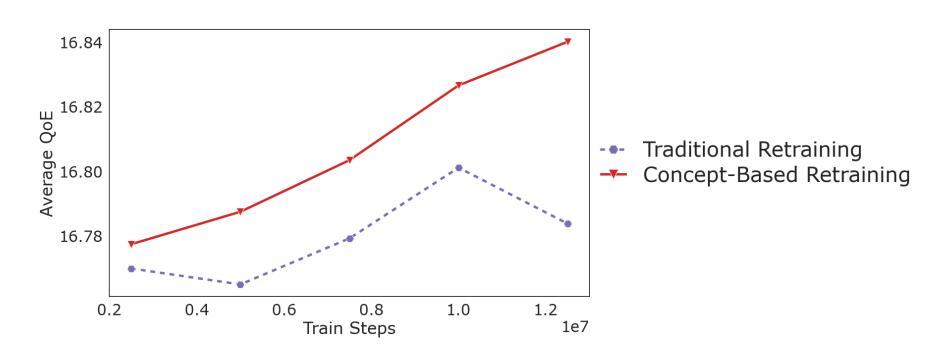
Use Cases: Distribution Shift Analysis

Gelato Datasets



Use Cases: Concept-Aware Retraining

Adaptive Bitrate Streaming Performance



Summary

- With Agua, we propose to move beyond feature-level explainability and towards an operator-aligned concept-level view
- Agua builds a surrogate concept-based model, attaining high fidelity and interpretability across
 - Congestion control, DDoS detection, adaptive video streaming
- Agua works with neural network controllers using supervised, unsupervised, and reinforcement learning
- We demonstrate Agua's ability to intuitively enable
 - Debugging, data shift detection, retraining, dataset expansion
- Code: https://github.com/NetSAIL-UCI/agua