Practically High Performant Neural Adaptive Video Streaming

Sagar Patel, Junyang Zhang, Nina Narodytska, Sangeetha Abdu Jyothi

1

Delivering Video over Internet is Challenging

• Video Streaming is a multi-billion dollar business

• However, delivery high quality-of-experience is still an open challenge

Network Uncertainty

Growing Video Size

Adaptive Bitrate Streaming

-Teyuto

Supervised Machine Learning

• Standard techniques use machine learning to predict the network and plan ahead

Limitations of Supervised Machine Learning

- However, predicting network behavior is challenging
 - The Internet is heavy-tailed: average behavior is not enough

• The Internet is partially observable: cross traffic is not visible

• Prediction Error compounds: Error of early chunks propagates

Can we use Reinforcement Learning?

- Prior RL solutions do not generalize
 - Pensieve [SIGCOMM '17]
 - Real-World Pensieve [RL4RealLife '19]
- However, Reinforcement Learning is different
 - Fundamentally different data-driven decision making
 - Does not require predicting the network

• Can we achieve high performance in the real world with reinforcement learning?

Practically High-Performant ABR: Our solution

- We address these by introducing
 - A new training framework, Plume
 - A new controller architecture, Gelato

Network Conditions in the Environment

- Environment depends on external network conditions
 - "Inputs"

Network Conditions (cont.)

• Replayed using a dataset of traces during training

• Future is unknown

The Problem: Traces are skewed

- Real World Network is skewed
 - 93% of YouTube streams *never* stall [SIGCOMM '17]
 - Even during lockdown's demand, only 8% of Facebook video streams are "bad sessions" [IMC '20]

Distribution of Throughput observed on the livestreaming platform Puffer over 2 months

The Problem: Impact of Trace Skew

- Traces sit outside of the RL loop and indirectly control the training
- With skewed traces, controller training
 - Can overfit
 - Be inefficient
 - Have noisy or divergent updates

Our Solution

Key Idea

- Balance the distribution with reward-to-go: difference between optimal and current
- Reward-to-go = $Reward^{\pi^*} Reward^{\pi}$

Prioritization

Scaling to ABR

- Real-world datasets are large
 - Can require 10^7 interactions
- Intuition: Traces with similar features have similar behavior
 - 1. Identify critical features of the traces
 - 2. Cluster the traces by their features
 - 3. Weight them the same

Prioritization

Critical Feature Identification

- Critical feature identification
 - Begin with a large set of standard timeseries features
 - Eliminate irrelevant features
 - 1. Group traces by features
 - 2. Train decision tree to predict groups
 - 3. Filter by most important features

Clustering

- Gaussian Mixture Model clustering
- Balance spread across features
- Automatically search for optimal number of clusters

Prioritization

- $Reward^{\pi^*}$ cannot be computed
- We introduce two approximation techniques
 - Static
 - Balance traces to uniform distribution

- Dynamic
 - Empirically approximate

Plume: All together

Practically High-Performant ABR: Our solution

- We address these by introducing
 - A new training framework, Plume
 - A new controller architecture, Gelato

Practical ABR with Gelato

Results

Simulation Evaluation

Plume improves overall performance of our controller Gelato and Pensieve [SIGCOMM '17]

Streaming Live TV across the Internet

Gelato-Plume achieves state-of-the-art performance on Puffer [NSDI '20], streaming **58.9** stream-years of live TV to **250k+ users** over 8 months

Streaming Live TV across the Internet

Generalization

Evaluating Plume's Generalizability

- Conditions in ABR cover a small set of all networking applications
- We benchmark Plume further
 - Across networking Applications
 - Load Balancing
 - Congestion Control
 - Across Trace Distributions
 - Varying distribution of throughput

Benchmarking Plume across applications

Plume generalizes across networking applications

Summary

- Deep Reinforcement Learning is a key technique to bring practical ML to adaptive video streaming
- Skewed trace distribution make RL training difficult
- We systematically balance traces with Plume
- Gelato with Plume achieves state-of-the-art performance in the real world, streaming live TV to internet users in the wild
 - First controller on Puffer to achieve both video quality and stalling improvement
 - Up to 75% reduction in stalling

Code

github.com/sagar-pa/plume

