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Delivering Video over Internet is Challenging
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• Video Streaming is a multi-billion dollar business

•However, delivery high quality-of-experience is still an 
open challenge

Network Uncertainty Growing Video Size



Adaptive Bitrate Streaming
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-Teyuto



Supervised Machine Learning
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• Standard techniques use machine learning to predict the 
network and plan ahead

Fugu [NSDI ‘20]CS2P [SIGCOMM ‘16]

Sensei [NSDI ‘21] Xatu [SIGMETRICS ‘21]



Limitations of Supervised Machine Learning
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•However, predicting network behavior is challenging
• The Internet is heavy-tailed: average behavior is not enough

• The Internet is partially observable: cross traffic is not visible

• Prediction Error compounds: Error of early chunks propagates



Can we use Reinforcement Learning?
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• Prior RL solutions do not generalize

• Pensieve [SIGCOMM ‘17]
• Real-World Pensieve [RL4RealLife ‘19]

•However, Reinforcement Learning is different
• Fundamentally different data-driven decision making
•Does not require predicting the network

• Can we achieve high performance in the real world with reinforcement 
learning?



Practically High-Performant ABR: Our solution
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•We address these by introducing

• A new training framework, Plume

• A new controller architecture, Gelato



Reinforcement Learning: ABR Perspective
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Network Conditions in the Environment
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Network Conditions (cont.)
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The Problem: Traces are skewed

• Real World Network is skewed

• 93% of YouTube streams never stall        
[SIGCOMM ‘17]

• Even during lockdown’s demand, only 
8% of Facebook video streams are “bad 
sessions”   [IMC ‘20]
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Distribution of Throughput observed on the 
livestreaming platform Puffer over 2 months



The Problem: Impact of Trace Skew

• Traces sit outside of the RL loop and 
indirectly control the training

• With skewed traces, controller training

• Can overfit

• Be inefficient

• Have noisy or divergent updates
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Our Solution
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Key Idea
• Balance the distribution with reward-to-go: difference 

between optimal and current

• Reward-to-go =  𝑅𝑒𝑤𝑎𝑟𝑑𝜋∗
− 𝑅𝑒𝑤𝑎𝑟𝑑𝜋
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Prioritization
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Scaling to ABR

• Real-world datasets are large

• Can require 107 interactions

• Intuition: Traces with similar features 
have similar behavior

1. Identify critical features of the traces

2. Cluster the traces by their features

3. Weight them the same
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Prioritization
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Critical Feature Identification

• Critical feature identification

• Begin with a large set of standard 
timeseries features 

• Eliminate irrelevant features

1. Group traces by features

2. Train decision tree to predict 
groups

3. Filter by most important features
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Clustering

• Gaussian Mixture Model 
clustering

• Balance spread across features

• Automatically search for 
optimal number of clusters
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Prioritization

• 𝑅𝑒𝑤𝑎𝑟𝑑𝜋∗
cannot be computed

• We introduce two approximation techniques

• Static

• Balance traces to uniform distribution

• Dynamic

• Empirically approximate

24

Cluster Weight 

Calculation

Trace 

Distribution

Static

Cluster Weight 

Calculation

Trace Error

Low Reward

Dynamic



Plume: All together
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Practically High-Performant ABR: Our solution
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•We address these by introducing

• A new training framework, Plume

• A new controller architecture, Gelato



Practical ABR with Gelato
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Results
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Simulation Evaluation
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All Traces Slow Traces

Plume improves overall performance of our controller Gelato and Pensieve [SIGCOMM ’17]



Streaming Live TV across the Internet
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All Traces Slow Traces

Gelato-Plume achieves state-of-the-art performance on Puffer [NSDI ‘20],
streaming 58.9 stream-years of live TV to 250k+ users over 8 months



Streaming Live TV across the Internet
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All Traces Slow Traces

1. 75% stall reduction
2. Statistically significant quality improvement
3. No retraining



Generalization
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Evaluating Plume’s Generalizability

• Conditions in ABR cover a small set of all networking applications

• We benchmark Plume further

• Across networking Applications

• Load Balancing

• Congestion Control

• Across Trace Distributions

• Varying distribution of throughput
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Benchmarking Plume across applications
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Plume generalizes across networking applications

Congestion ControlLoad Balancing



Summary

• Deep Reinforcement Learning is a key technique to bring 
practical ML to adaptive video streaming

• Skewed trace distribution make RL training difficult

• We systematically balance traces with Plume

• Gelato with Plume achieves state-of-the-art performance in 
the real world, streaming live TV to internet users in the wild

• First controller on Puffer to achieve both video quality and 
stalling improvement

• Up to 75% reduction in stalling
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Contact
sagar.patel@uci.edu

 

Code
github.com/sagar-pa/plume

mailto:sagar.patel@uci.edu
http://github.com/sagar-pa/plume
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