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Delivering Video over Internet is Challenging

* Video Streaming is a multi-billion dollar business
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* However, delivery high quality-of-experience is still an
open challenge
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Adaptive Bitrate Streaming
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Supervised Machine Learning

* Standard techniques use machine learning to predict the
network and plan ahead

[ CS2P [SIGCOMM “16] J [ Fugu [NSDI ‘20] J
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Limitations of Supervised Machine Learning

* However, predicting network behavior is challenging

* The Internet is heavy-tailed: average behavior is not enough
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* The Internet is partially observable: cross traffic is not visible

* Prediction Error compounds: Error of early chunks propagates
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Can we use Reinforcement Learning?

* Prior RL solutions do not generalize
e Pensieve [SIGCOMM ‘17]
* Real-World Pensieve [RL4RealLife ‘19]

e However, Reinforcement Learning is different
* Fundamentally different data-driven decision making
* Does not require predicting the network

* Can we achieve high performance in the real world with reinforcement
learning?



Practically High-Performant ABR: Our solution

* We address these by introducing
* A new training framework, Plume
* A new controller architecture, Gelato



Reinforcement Learning: ABR Perspective
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Reinforcement Learning: ABR Perspective
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Reinforcement Learning: ABR Perspective
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Reinforcement Learning: ABR Perspective
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Reinforcement Learning: ABR Perspective
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Network Conditions in the Environment
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* Environment depends on
external network conditions

* “Inputs”
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Network Conditions (cont.)
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The Problem: Traces are skewed

* Real World Network is skewed 10— putter traces |
* 93% of YouTube streams never stall 0.8 _ _ ?ﬁ'&%ﬂfﬁf of :
[S|GCOMM (17] 0.6 quality video I
e |
e Even during lockdown’s demand, only 0 04 :
8% of Facebook video streams are “bad ' !
sessions” [IMC 20] 0.2 :
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Throughput (Mbps)

Distribution of Throughput observed on the
livestreaming platform Puffer over 2 months
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The Problem: Impact of Trace Skew

e Traces sit outside of the RL loop and
indirectly control the training

* With skewed traces, controller training
e Can overfit
* Beinefficient

* Have noisy or divergent updates
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Our Solution



Key |dea

* Balance the distribution with reward-to-go: difference
between optimal and current

* Reward-to-go = Reward™ — Reward™
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Prioritization
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Scaling to ABR

e Real-world datasets are large

* Can require 107 interactions

e Intuition: Traces with similar features

have similar behavior
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Prioritization
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Critical Feature Identification

e Critical feature identification

> Cluster
. . Cluster
* Begin with a large set of standard Better Labels
. . Features
timeseries features Feature Supervised
Importance Decision Tree
— Filter Features Classification

e Eliminate irrelevant features
1. Group traces by features

2. Train decision tree to predict
groups

3. Filter by most important features



Clustering

e Gaussian Mixture Model
clustering

e Balance spread across features

e Automatically search for
optimal number of clusters
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Prioritization

» Reward™ cannot be computed
* We introduce two approximation techniques
* Static

e Balance traces to uniform distribution
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Plume: All together
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Practically High-Performant ABR: Our solution

* We address these by introducing
* A new training framework, Plume
* A new controller architecture, Gelato
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Practical ABR with Gelato
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Results
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Simulation Evaluation

Normalized Average QoE
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Plume improves overall performance of our controller Gelato and Pensieve [SIGCOMM ’17]
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Streaming Live TV across the Internet
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Gelato-Plume achieves state-of-the-art performance on Puffer [NSDI ‘20],
streaming 58.9 stream-years of live TV to 250k+ users over 8 months
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Streaming Live TV across the Internet
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Generalization
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Evaluating Plume’s Generalizability

* Conditions in ABR cover a small set of all networking applications
* We benchmark Plume further
e Across networking Applications
* Load Balancing
e Congestion Control
* Across Trace Distributions
* Varying distribution of throughput
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Benchmarking Plume across applications

|
N
o
o
o

—-2500

—3000

—-3500

Normalized Average JCT

/, .... pY 2000 ——
v Ay -#‘“’{’ S TR
Ny 1950 A e
....:;0..‘.701; g tsnng 'E ig;..-ﬂ
Ay ] ] © 1900 >
AN % SAEY
1850 i
f 4 4
L wn ]
© 1800 ¢
< Random y -=<=- Random
4 Plume-Static 1750 / ~--¢--- Plume-Static
¥ Plume-Dynamic 1700 1! —— Plume-Dynamic
20 40 60 80 100 20 40_ 60 80
Training Progress Training Progress

Load Balancing Congestion Control

Plume generalizes across networking applications

100

34



summary

* Deep Reinforcement Learning is a key technique to bring Contact

practical ML to adaptive video streaming sagar.patel@uci.edu
» Skewed trace distribution make RL training difficult _E?i@l
* We systematically balance traces with Plume 11':‘*5,;%
* Gelato with Plume achieves state-of-the-art performance in EI‘E IS

Code

the real world, streaming live TV to internet users in the wild ,
github.com/sagar-pa/plume

* First controller on Puffer to achieve both video quality and

cor OF=2d0
stalling improvement "F;ﬁh :

e Up to 75% reduction in stalling E’fll"ﬁ!. l:j'
D
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