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Despite offering early promise, Deep Reinforcement Learning (DRL) suffers from several challenges in adaptive

bitrate streaming stemming from the uncertainty and noise in network conditions. However, in this paper, we

find that although these challenges complicate the training process, in practice, we can substantially mitigate

their effects by addressing a key overlooked factor: the skewed input trace distribution in DRL training

datasets.

We introduce a generalized framework, Plume, to automatically identify and balance the skew using a

three-stage process. First, we identify the critical features that determine the behavior of the traces. Second,

we classify the traces into clusters. Finally, we prioritize the salient clusters to improve the overall performance

of the controller. We implement our ideas with a novel ABR controller, Gelato, and evaluate the performance

against state-of-the-art controllers in the real world for more than a year, streaming 59 stream-years of

television to over 280, 000 users on the live streaming platform Puffer. Gelato trained with Plume outperforms

all baseline solutions and becomes the first controller on the platform to deliver statistically significant

improvements in both video quality and stalling, decreasing stalls by as much as 75%.
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1 INTRODUCTION
Video streaming is the prominent Internet application, accounting for over 75% of the entire

traffic [14]. Despite this, delivering high quality video over the Internet continues to be challenging,

primarily due to the noisy and highly unpredictable network conditions the video is sent over [68,

71]. The primary approach to tackle this is to use Dynamic Adaptive Streaming over HTTP

(DASH) [57]. This approach divides the video into small, seconds-long, chunks and pre-encodes

them at multiple bitrates. Then, during streaming, an Adaptive Bitrate (ABR) algorithm selects the

bitrate of each chunk, adapting to the network conditions and maximizing the quality of experience.
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Recent work has shown the potential of data-driven machine learning approaches to ABR [9,

58, 65, 70] in surpassing traditional heuristic-based methods [24, 56, 67]. These techniques consist

of two main components: a machine learning model that predicts future network conditions (e.g.,

a transmission time predictor) and a planning algorithm that uses these predictions to select the

optimal bitrate (e.g., a dynamic programming algorithm). While these techniques are theoretically

optimal with accurate predictors, achieving such performance is difficult due to the requirements

of the planning component and the complexities in modeling the Internet (§ 3.1).

Deep Reinforcement Learning (DRL) offers a promising approach to overcoming these limitations

by using a fundamentally different mechanism for data-driven decision-making. Instead of modeling

the Internet and using predictions to select bitrates, DRL directly learns the bitrate selection strategy

by iteratively optimizing a policy [59]. This involves evaluating the current policy, performing

actions to gather states and rewards, and optimizing it to maximize selecting bitrates that lead to

higher rewards. This approach bypasses the need to accurately predict the outcome of sending

every bitrate, presenting a natural way out of the current gaps in Internet modeling.

However, despite the promise of the path presented by DRL, obtaining high real-world perfor-

mance in ABR remains challenging for DRL [36]. This is because in ABR, unlike traditional DRL

environments such as gaming or robotics, there exists an unpredictable underlying input process:

the wide-area Internet. This process is formally called an “input process” [39]. During training,

the inputs are replayed using a dataset of input traces, or system logs. Such input-driven DRL

environments have several characteristics that make DRL training difficult. First, training in input-

driven RL environments is inefficient, requiring a significant number of iterations [37]. Second, the

dependence on external inputs such as network conditions introduces high levels of uncertainty

and noise [39]. These challenges together make training highly non-trivial, causing several prior

work [36, 37, 65] to conclude that addressing them was essential for real-world performance.

Our analysis reveals a key overlooked factor behind these challenges: the skewed distribution of

input traces in training datasets. This skew results in limited training on rare or tail-end traces

and introduces noise in learning due to updates based on a narrow set of traces. Consequently, the

performance on these tail-end traces is often suboptimal, unlike the heavily optimized “common”

traces. However, focusing on the performance of the tail-end traces is vital for data-driven controllers

in improving the overall performance over baselines [27]. Unfortunately, such skew is prevalent

in ABR. For example, over an 8-month period on the video streaming platform Puffer [65], low-

bandwidth input traces made up less than 20% of the total, with only 4% experiencing any stalls.

Therefore, addressing skew is essential for (a) mitigating amplified learning challenges and (b)

improving overall controller performance, across both “common” and tail-end input traces.

While techniques for addressing data skew are prevalent in various contexts [16, 18, 31, 34, 44,

51, 69], standard supervised learning solutions such as oversampling or undersampling specific

labeled classes do not apply to Reinforcement Learning, where the controller learns using states,

actions and rewards (§ 9). The few solutions designed specifically for DRL are inadequate for ABR

controllers because they fail to capture the trace-centric nature of the problem (§ 3.3). Thus, to

effectively address this skew, we introduce a novel approach targeting the input traces.
Input traces, which represent logs of time-dependent complex processes, lack a conventional

mechanism to identify and balance the skew with. These traces have no features or labels and do

not directly contribute to a loss function. Thus, a mechanism to identify and balance the skew

in input-driven environments is needed. To do so, in this work, we introduce a generalizable

framework, Plume. Plume employs an automated three-stage process. Critical Feature Identification:
We automatically determine the critical trace features to identify the traces. Clustering: We employ

clustering to convert the critical features into salient identifiers. Prioritization: In this stage, we

prioritize the clusters, such as to expose the controller to traces where it can learn the most (§ 4).
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We evaluate our ideas with Gelato, a novel ABR controller. Trained with Plume, Gelato offers

SOTA performance on the real-world streaming platform Puffer [65], streaming 59 stream-years

of live TV to over 280, 000 users [2, 65] in a year. It is the first controller on the platform to show

statistically significant improvements in both video quality and stalling. It outperforms previous

SOTA data-driven controllers, CausalSim [10] and Fugu [65], reducing stalls by 75% and 78%.

To assess the generalizability of Plume, we evaluate its performance on various network trace

distributions and in two other applications, Congestion Control and Load Balancing. To facilitate

this evaluation, we introduce TraceBench, a simplified ABR environment with parametrically

generated traces to create diverse test trace distributions in a controlled and precise manner. Using

it, we demonstrate Plume’s dynamic performance across controllers, environments, and trace

distributions (§ 7).

In summary, we make the following contributions:

• We systematically study an overlooked aspect of DRL training—skewed datasets—and find that

they can have a surprisingly large impact on performance.

• We propose Plume as a generalizable framework for handling skewed datasets and improving

the performance of DRL controllers in Video Streaming.

• We introduce Gelato, a new ABR controller. Plume-trained Gelato, deployed on the real-world

Puffer platform [65] for more than a year, is the first controller with significant improvements in

both video quality and stalling, reducing stalling by 75% over the previous state-of-the-art.

• We demonstrate the generalizability of Plume, across different distributions of network conditions

and different networking applications.

This work does not raise any ethical concerns.

2 BACKGROUND
In this section, we give a brief overview of reinforcement learning and adaptive bitrate streaming.

2.1 Reinforcement Learning Preliminiaries
In Deep Reinforcement Learning (DRL), an agent interacts with an environment, receiving the

current system state 𝑠𝑡 at each timestep and taking action 𝑎𝑡 from policy 𝜋 (𝑎 |𝑠𝑡 ). The environment

transitions to state 𝑠𝑡+1 post action, awarding agent reward 𝑟𝑡 [7, 55, 59].
In network environments, non-deterministic network conditions are primary sources of noise

and uncertainty. These conditions determine the environment’s response to the controller’s actions.

E.g. in adaptive bitrate streaming, external network conditions dictate whether a stall occurs.

Formally, these conditions are called “inputs”, and input-driven environments form an Input-

Driven Markov Decision Process [39], defined by (𝑆,𝐴, 𝑍, 𝑃𝑠 , 𝑃𝑧, 𝑟 , 𝛾). Here, 𝑆 is the state set, 𝐴 the

action set,𝑍 the training input traces, 𝑃𝑠 and 𝑃𝑧 the state and input transition functions, 𝑟 the reward

function, and 𝛾 the discount. The state transition function 𝑃𝑠 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 , 𝑧𝑡+1) defines the probability
distribution of the next state 𝑠𝑡+1 given the current state 𝑠𝑡 , action 𝑎𝑡 , and upcoming input 𝑧𝑡+1.
Meanwhile, the input transition function 𝑃𝑧 (𝑧𝑡+1 |𝑧𝑡 ) defines the probability of the next input value

based on current, leading to an effective transition function given by 𝑃𝑠 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 , 𝑧𝑡+1)𝑃𝑧 (𝑧𝑡+1 |𝑧𝑡 ).
The DRL learning process aims to guide the policy 𝜋 towards higher cumulative reward through

a loop involving two steps: a policy evaluation step and a policy improvement step [23]. In policy

evaluation, the agent assesses its policy by gaining experience through acting in the environment

and using it in function learning. It updates its neural network to learn value function 𝑣𝜋 (𝑠) =

E𝜋 [𝐺 |𝑠0 = 𝑠], the expected return 𝐺 from state 𝑠 , where 𝐺 is the discounted reward sum 𝐺 =∑∞
𝑡=0 𝛾

𝑡𝑟𝑡 . Next, in policy improvement, the agent alters 𝜋 to maximize 𝑣𝜋 , iteratively learning by

estimating and maximizing the value function.
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Fig. 1. Puffer Input Trace distri-
bution: Distribution of Puffer trace
effective throughput from Apr ’21 -
May ’21. Under 6.5% of traces are
below the highest quality video’s av-
erage bitrate. Each stream in Puffer
is considered a trace.

Fig. 2. Comparing Prioritization Techniques: Evaluating transition
sampling (PER on/off) versus trace sampling (Random vs. 2-Class
Equal Weighted) using Ape-X DQN [23]. 2-Class Equal Weighted
Trace Selection excels in performance and training efficiency, unlike
PER. Error bands represent 95% confidence interval.

On-policy and Off-policy DRL. DRL algorithms are broadly divided into two categories based on

their policy evaluation stages. On-policy RL algorithms redo policy evaluation each iteration, using

data from the latest policy [59]. These algorithms have found wide use in networking [26, 35, 38].

Off-policy RL algorithms partially use old policy data for better efficiency. They maintain a window

of environment transitions, described by the tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1), in a FIFO buffer called Experience

Replay [42]. Off-policy algorithms are similarly popular in networking, as used by [6, 64].

2.2 Adaptive Bitrate Streaming
In HTTP-based video streaming, the video is divided into chunks and encoded, in advance, at

multiple discrete bitrates. During streaming, the most appropriate bitrate is chosen per chunk

based on network conditions. The client also has a short buffer that can hold received chunks

that have not been viewed yet. The ABR algorithm is responsible for sequentially selecting the

video bitrate on a chunk level to maximize the viewer’s Quality of Experience (QoE). Typically, the

QoE is measured with a numerical function that awards higher quality, and penalizes both quality

fluctuations and rebuffering. The quality may be defined by the encoded bitrate or by complex

measures such as Structural Similarity Index Measure (SSIM) [61].

3 MOTIVATION
We discuss why Deep Reinforcement Learning (DRL) is used for ABR and the challenge of skewed

training datasets. We then overview current techniques and the need for prioritized trace sampling.

3.1 Why use DRL for Adaptive Bitrate Streaming
Several data-driven controllers for Adaptive Bitrate Streaming exist today [9, 58, 65, 70]. These

build on classical controllers like MPC [67], with a machine learning predictor replacing heuristics

like the harmonic mean. They include two components: the machine learning predictor for future

network conditions and the planning algorithm for bitrate selection.

With an accurate predictor, these techniques are theoretically optimal. However, practical per-

formance is limited by difficulties predicting Internet behavior [17, 46]. The planning component

needs accurate predictions for all bitrates in every condition, but predictions for rarely chosen

bitrates can be inaccurate due to their out-of-distribution nature [10]. Additionally, planning often

involves multiple future chunks, compounding prediction errors over time as current predictions

are used for future ones (e.g., predicted buffer used as starting point for the next chunk) [25, 32].
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Deep Reinforcement Learning (DRL) overcomes these challenges with a fundamentally different

data-driven decision-making process. Instead of predicting Internet behavior and then selecting bi-

trates, DRL learns bitrate selection through a loop between policy evaluation and improvement [59],

iteratively optimizing the viewer’s experience. A key advantage is that it only considers bitrates

similar to those already chosen by the policy [42]. Additionally, it relies on a bootstrap of aggregated

performance rather than precisely needing outcomes for future chunks [22, 42]. These advantages

make DRL promising for ABR while the research community catches up on Internet simulation.

3.2 Challenges with DRL Training
Having established the promise of DRL for video streaming, we now discuss its challenges.

Challenge 1: Inefficient exploration. In input-driven environments, most of the state-action

space shows little reward feedback difference [37]. Standard exploration techniques, selecting

random actions with 𝜖 probability and following greedy actions otherwise, have a low chance of

finding a successful policy and require many training iterations. The imbalance in training datasets,

especially the under-representation of rare traces, exacerbates this complexity. Such traces are rarely

encountered by the controller, limiting its opportunity to discover successful strategies for them.

However, performance in these tail-end traces can be crucial for higher overall performance [27].

Challenge 2: Noise andUncertainty. Network conditions, or inputs, determine the environment’s

behavior and are the main source of uncertainty. For instance, when an ABR controller chooses a

bitrate, it lacks knowledge of the client’s link bandwidth. This unobserved factor directly impacts

the client’s wait time for the chunk. Such variability introduces noise into the learning process,

causing identical states to yield widely different outcomes based on network conditions [39]. This

noise is amplified when network trace distribution is skewed. In these cases, a single training

iteration may not represent the full spectrum of input traces, leading to divergent or noisy updates.

Other Challenges with skew. Skew in the distribution of input traces presents challenges during

the function learning phase of DRL training (§ 2.1). Since states are dependent on these input

traces, a skewed input distribution leads to a skewed state distribution. This imbalance in the state

distribution degrades the neural network performance, making it vulnerable to overfitting [28, 66].

3.3 Towards Prioritizing Trace Sampling
Next, we discuss prior ML techniques for handling skew and show the need for a new approach.

Prioritized Experience Replay (PER). Off-policy DRL algorithms use a buffer to store past state

transitions and apply Prioritized Experience Replay (PER) [51] to sample them during function

learning. PER employs prioritization, also known as importance sampling, to select state transitions

based on their Temporal Difference error, focusing on transitions with higher error to improve the

controller’s predictions where most needed.

While PER is effective in traditional DRL settings [22, 23], it is limited in input-driven environ-

ments. PER addresses state skew in the function learning phase, but input trace skew affects the

acting phase (§ 2.1). The controller has limited opportunities to act in tail-end traces. Without

modifying trace selection during the acting phase, PER cannot increase exploration in tail-end

traces or ensure comprehensive evaluation across the entire trace distribution.

Prioritized Trace Sampling. We reexamine the DRL workflow and identify a better location

for prioritization. We propose a simple training paradigm in input-driven environments: prioritiz-

ing trace sampling during the acting step. This achieves high state-action space exploration and

representative evaluation on all trace types.

To test our hypothesis, we enable prioritization at two points in the DRL workflow: sampling

transitions in the experience buffer at the function learning step (PER enabled vs. disabled) and

sampling input traces in the acting step (Random sampling vs. 2-Class Equal Weighted). 2-Class
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Fig. 3. Plume System Diagram: The Plume Workflow involves three key stages: (1) Critical Feature Iden-
tification, where we characterize the traces and their skew, (2) Clustering, where we try to simplify the
prioritization problem by grouping traces, (3) Prioritization, where we prioritize important trace clusters.

Equal Weighted is a simple input trace prioritization scheme that divides traces into two classes,

those with mean throughput higher/lower than 0.98 Mbps (Figure 1), and samples both classes

equally. We evaluate each technique’s impact on a DQN variation of Gelato controller for ABR,

trained using the Ape-X DQN algorithm [23] (training settings detailed in § 5 and § 6.2)

In Figure 2, we observe that the simple 2-Class Equal Weighted gives the highest performance and

training stability. By prioritizing tail-end slow throughput traces, we achieve high performance in

both all and slow network traces without compromises. Enabling PER does not improve performance,

even though the replay buffer can store 2M transitions (over 5000 traces). PER’s performance falls

short of the naive trace prioritization scheme. This highlights that trace distribution skew cannot

be overcome at the function learning step.

4 DESIGN
Toward improving the performance of DRL training by balancing skew, we put forward the idea

that trace selection is the aptest location for prioritization.

To balance the skew during trace selection, we take advantage of a key observation: input traces

inherently correspond to users or workloads, with groups of them sharing similar characteristics.

To ensure a balanced representation of the underlying users, the dataset must contain a roughly

uniform number of input traces across them. We define input traces to have a set of user attributes

Φ = [𝜙1, 𝜙2, ...] given by the functionΦ = 𝑋 (𝑡𝑟𝑎𝑐𝑒), where𝑋 depends on the domain. These features

identify similarities between user traces, and play a key role in balancing the skew.

Plume is a systematic framework to automatically balance this skew in input traces. Plume allows

the agent to have balanced exploration and stable learning updates. Figure 3 gives an overview of

the Plume workflow. Plume is implemented in the Trace Selection module which is responsible

for supplying traces to the simulation environment. This module sits outside of the DRL training

loop and is queried by the environment to get traces to replay. Plume has three key stages: critical

feature identification, clustering, and prioritization.

In the critical feature identification stage (§ 4.1), Plume identifies the attributes of the input traces.

In the clustering stage (§ 4.2), it simplifies the prioritization problem by clustering the attributes.

Finally, in the Prioritization (§ 4.3) stage, Plume prioritizes the traces to balance input traces using

one of two techniques: static or dynamic.
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4.1 Critical Feature Identification
Input traces, which are time-dependent series of values that define complex external conditions, can

be incredibly difficult to characterize and prioritize directly. Hence, the first step towards automated

prioritization of traces is identifying the attributes Φ using critical feature identification.

To extract all features of the time series trace data, we rely on the popular feature extraction

tool for the time series data, tsfresh [13]. We extract a large set of features [𝜙1, 𝜙2, ...𝜙𝑛] broadly
applicable to all input-driven DRL environments, such as truncated mean, ratio of values beyond

a certain standard deviation, mean absolute change, or autocorrelation. For the full list of these

features, see Appendix A. However, because this large set of features may not be relevant to every

application, we introduce an automated three-step process to narrow down to the critical ones,

inspired by recursive feature elimination in supervised learning [4].

First, we start with the large feature set and apply clustering to create a small number of clusters.

This is denoted by 𝑐 = 𝐶 ( [𝜙1, 𝜙2, ...𝜙𝑛]), where 𝑐 is the cluster labels, and𝐶 is the clustering function.

Second, we obtain the features most relevant in producing this mapping. To do so, we use the

cluster labels 𝑐 and train decision trees based on the features [𝜙1, 𝜙2, ...𝜙𝑛]. With this training, we

can compute the information gain 𝐼𝐺 (𝑐, 𝜙𝑖 ) = 𝐻 (𝑐) − 𝐻 (𝑐 |𝜙𝑖 ) for each feature 𝜙𝑖 . Here, 𝐻 is the

Shannon entropy of the cluster labels, which is a measure of the average level of “uncertainty”.

Third, we eliminate features with the lowest 𝐼𝐺 values. We continue this cycle of clustering,

classification, and feature elimination until we are left with only the features that have high

information gain. As we eliminate less useful features, we increase the number of clusters to ensure

that the final feature set is sufficiently expressive. We note that this process, while empirically

performant, is imperfect and can be improved with expert knowledge of the features.

Note that the clustering at this stage is solely for feature selection and has no impact on the

clustering phase (§ 4.2).

4.2 Clustering
The second stage involves clustering traces using the critical features identified in the previous

stage. In this stage, we attempt to reduce the complexity of balancing the skew by obtaining their

salient clusters.

To detect skew in the dataset, we can look at the attributes Φ of input traces. However, balancing

the skew based solely on these attributes proves to be a complex task. This difficulty arises because

the attributes, represented as [𝜙1, 𝜙2, . . . , 𝜙𝑛], are continuous random variables that may not be

independent. In other words, modifying the skew of one attribute could negatively affect the skew

of another. To address this, we cluster the traces to obtain a single distribution to balance. We use

a clustering algorithm 𝐶 to obtain the labels 𝑐 so that the mapping again becomes 𝑐 = 𝐶 (Φ). By
doing so, we create a ranking function that allows us to instead prioritize a categorical distribution

of input traces, where the cluster labels act as the categories. We represent this distribution as 𝑦,

where 𝑦𝑖 is a category, or salient trace cluster within it.

To cluster the traces, we employ Gaussian Mixture Models (GMM) with Kmeans++ [47]. Gaussian

Mixture Models use a generalized Expectation Maximization algorithm [1] and can effectively

deal with the large variations found in input data. Note here GMMs must also balance the number

of clusters with the variation to ensure that prioritization does not collapse the distribution. We

balance this by conducting a search for the number using Silhouette scores [5]. This entire clustering

process can add a one-time overhead in the order of minutes.

We visualize the clustering of Puffer traces automatically produced by Plume in Fig. 4 where we

plot the clusters across two identified critical features. It produces minimal clusters while separating

salient characteristics such as mean and variation in throughput. Note that the ratio of throughput
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beyond 2.5 std is a measure of variation that calculates the proportion of the trace that lies beyond

2.5× standard deviation of the mean within that trace. score [5].

4.3 Prioritization
With critical feature identification and clustering stages complete, we have a categorical distribution

of input traces 𝑦 that we can balance by prioritization.

So far, we have discussed balancing the distribution 𝑦. While this can be done in a number of

ways, to ensure that the balancing leads to meaningful performance improvements, we introduce a

target function to balance the distribution around: “reward-to-go”. Reward-to-go represents the

additional rewards that a controller can still achieve. This can be formally defined by Equation 1:

Δ𝐺𝑦𝑖 = E𝑦𝑖 [𝐺𝜋∗ −𝐺𝜋𝜃 ] (1)

In this equation, 𝑦𝑖 is a category (§ 4.2) in the input trace distribution 𝑦, 𝐺 =
∑∞

𝑡=0 𝛾
𝑡𝑟𝑡 is the

discounted return of the trace as described in Section 2.1,𝐺𝜋∗
is the return under the optimal policy

𝜋∗
, and 𝐺𝜋𝜃

is the return under the current policy. We aim to balance the input trace distribution

based on how suboptimally the current policy performs, ensuring a uniform gap across all traces.

In other words, we seek to ensure that target function Δ𝐺𝑦𝑖 = Δ𝐺𝑦 𝑗
for all categories 𝑦𝑖 and 𝑦 𝑗 .

However, calculating reward-to-go is often not possible in real-world situations because it depends

on variables such as state features, and can require solving an NP-hard problem [40]. In this work,

we introduce two strategies to approximate this prioritization: Static and Dynamic.

Static Prioritization. In this approach, we tackle skew by statically balancing the distribution of

input traces. Specifically, we adjust the sampling weights to be the inverse of the distribution 𝑦, as

expressed in Equation 2:

𝑊𝑦𝑖 =
1

𝑓 (𝑦𝑖 )
(2)

Here,𝑊𝑦𝑖 signifies the prioritization weight for category 𝑦𝑖 , and 𝑓 (𝑦𝑖 ) is the original probability
density function for the categorical distribution𝑦. When we sample according to these prioritization

weights, we modify the effective probability density function, which now becomes

𝑓 ′ (𝑦𝑖 ) =
𝑊𝑦𝑖 𝑓 (𝑦𝑖 )∑

𝑦𝑘 ∈𝑦𝑊𝑦𝑘 𝑓 (𝑦𝑘 )
. (3)

While there exists no analytical way to compute Δ𝐺𝑦𝑖 , in some cases, we can show that static

prioritization effectively balances the skew. First, consider that under random trace sampling, the

imbalance can be arbitrarily large:

Proposition 4.1. Let 𝐿 be a constant and 𝑦 be a categorical distribution of input traces. Suppose
Δ𝐺𝑦𝑖

Δ𝐺𝑦 𝑗

≈
𝑓 (𝑦 𝑗 )
𝑓 (𝑦𝑖 )

,

then there exists a distribution of traces 𝑦 such that
Δ𝐺𝑦𝑖

Δ𝐺𝑦 𝑗

≥ 𝐿.

Proof. Consider a distribution with two categories where

𝑓 (𝑦1) =
1

1 + 𝐿
and 𝑓 (𝑦2) = 1 − 𝑓 (𝑦1) =

𝐿

𝐿 + 1

.

From the above, it follows that

Δ𝐺𝑦1

Δ𝐺𝑦2

≈ 𝐿.
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□

However, using static prioritization, this imbalance no longer exists:

Proposition 4.2. Let 𝑦′ denote the re-weighted categorical distribution of input traces. Suppose
Δ𝐺 ′

𝑦𝑖

Δ𝐺 ′
𝑦 𝑗

≈
𝑓 ′ (𝑦 𝑗 )
𝑓 ′ (𝑦𝑖 )

,

then
Δ𝐺 ′

𝑦𝑖
≈ Δ𝐺 ′

𝑦 𝑗
.

Proof. From the given condition, we have

Δ𝐺 ′
𝑦𝑖

Δ𝐺 ′
𝑦 𝑗

≈
𝑓 ′ (𝑦 𝑗 )
𝑓 ′ (𝑦𝑖 )

=
𝑊𝑦 𝑗

𝑓 (𝑦 𝑗 )
𝑊𝑦𝑖 𝑓 (𝑦𝑖 )

·
∑

𝑦𝑘 ∈𝑦𝑊𝑦𝑘 𝑓 (𝑦𝑘 )∑
𝑦𝑘 ∈𝑦𝑊𝑦𝑘 𝑓 (𝑦𝑘 )

= 1.

□

Given these propositions, it is evident that under static prioritization, irrespective of the initial

input trace distribution, the relative reward-to-go ratio
Δ𝐺 ′𝑦𝑖
Δ𝐺 ′𝑦 𝑗

is close to one, while this ratio can

be large under random trace sampling. For both propositions, an underlying assumption is that

the ratio

Δ𝐺𝑦𝑖

Δ𝐺𝑦𝑗

is approximately equal to the inverse of the ratio of probability densities for the

relevant categories. This assumption rests on the observation that the mean loss reduction used

in optimizing the controller is expected to accrue larger error on the space less represented in its

samples. Consequently, the reward-to-go gap decreases with increasing sampling probability.

Dynamic Prioritization. In dynamic prioritization, we compute an approximation of reward-to-go

that adapts to the training process. Reward-to-go of a category can vary as the training progresses,

and hence, the extent of prioritization needed for a category can differ across training.

Δ𝐺𝑦𝑖 = E𝑦𝑖 [𝐺𝜋∗ −𝐺𝜋𝜃 ]

Δ𝐺𝑦𝑖 ≈ E𝑦𝑖 [𝐺 (Φ) −𝐺𝜋𝜃 ] Approximate policy

Δ𝐺𝑦𝑖 ≈ E𝑦𝑖 [𝐺 (Φ) −𝐺𝜋𝜃 ] − E𝑦𝑖 [𝐺𝜋𝜃 ] Compensate bias

(4)

As the optimal return cannot be calculated, we replace the return 𝐺𝜋∗
with the learned expected

return 𝐺 (Φ). 𝐺 is a function approximator trained alongside controller training and exploration to

map the trace attributes Φ to the observed return obtained based on a rolling set. The difference

from this learned estimate serves as a measure for improvement yet to be achieved by the controller.

However, because this estimate is based on the return samples seen so far, this approximation

can be pessimistic and require an explicit optimism compensation. To address this concern, we

introduce the second term, −E𝑦𝑖 [𝐺𝜋𝜃 ], which gives priority to traces that have low returns.

The dynamic weights are proportional to the normalized sum of components of Δ𝐺𝑦𝑖 (Eq. 4).

Note that the prioritization is outside the DRL algorithm’s training loop in Trace Selection (Fig. 3).

5 GELATO
We introduce Gelato, a novel ABR controller architecture. Unlike simpler DRL environments, ABR

benefits from this new architecture, enhancing training efficiency and performance. As shown in

Section 6, combining Gelato with the Plume framework yields a controller that can outperform all

existing ABR controllers in real-world and simulated settings. Refer to Figure 5 for an overview.

Rewards. We optimize for SSIM, using reward coefficients from Fugu [65] (+SSIM, −stalls, −ΔSSIM).

We utilize video chunk sizes and SSIM values from Puffer’s public logs. Rewards are normalized
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Fig. 4. Clustering Visualization: We
show the clustering produced by Plume.

Fig. 5. Architecture of Gelato: Gelato takes as input
complex features of the video stream.

using 𝑟 : 𝑠𝑖𝑔𝑛(𝑟 ) (
√︁
|𝑟 | + 1 − 1) + 𝜖𝑟 and clipping, with 𝜖 = 10

−2
. This normalization, empirically

effective for varied, large-scale rewards [48], mitigates the impact of extreme reward values.

Features. Gelato employs comprehensive application-level features, including client buffer and

past rewards history, and a longer history of stalls over 30 chunks, aggregated every 3 chunks. This

approach enhances the controller’s adaptability to network conditions. Unlike Fugu, Gelato omits

low-level TCP statistics, yet similarly utilizes transmit time and the sizes and SSIMs of upcoming

chunks, available due to chunks being pre-encoded in ABR.

Neural Architecture. Gelato’s neural network is optimized for efficiency, featuring an extra

convolutional layer to downsample inputs, thus reducing FC layer input size. This deeper network

enables advanced feature extraction while cutting trainable parameters and Mult-Add operations

by 76% and 68% respectively, compared to Pensieve [38].

For Gelato’s off-policy DQN variant (contrasted with PER in Figure 2), we employ the same

architecture, substituting the policy and value networks with a single dueling Q-network [62].

Details are in Appx. B.

6 EXPERIMENTS
In this section, we present the findings of testing the impact of Plume across multiple agent

architectures, and across simulation and real-world trials.

6.1 Implementation
We now turn to detail our implementation of all the experiments performed in this paper. We

implement Plume as a Python library compatible with all major DRL frameworks.

Training environments and algorithms. We implement the ABR environment by extending the

Park Project [37] and interfacing with Puffer traces [65]. We use the OpenAI Gym [12] interface

and the RL libraries Stable-Baselines 3 [49] and RLlib [33].

Plume1. We implement Plume completely outside of the DRL workflow in the Trace Selection

Module. To implement the critical feature identification stage, we use tsfresh [13] for its feature-

extraction tools and Scikit-Learn [47] for its decision tree and clustering implementation. To

1
https://github.com/sagar-pa/plume
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implement the clustering stage, we use Scikit-Learn for its Gaussian Mixture Model and Silhou-

ette scoring implementation. To implement the prioritization stage, we employ Numpy [20] and

PyTorch [45]. For more details, see Appx. F.

6.2 Settings
In this section, we present the settings used in our experiments. We present our results as averages

over 4 instances (4 controllers trained using the same scheme with different initial random seeds).

This is consistent with the standard reporting practice in the RL community [23, 29, 41]. For testing

on the Puffer platform, we select the best seed for benchmarking. For details, see Appx. B and D.

Simulation. For ABR, we use the Puffer platform network traces from April 2021 - May 2021. We

enforce a trace length requirement of 3 − 17 stream-minutes to reduce I/O overhead and prevent

long traces from dominating training, randomly splitting long traces. This results in more than

75, 000 traces, of which we randomly select about 55, 000, representing over 4.25 stream-years, for

our analysis. We use 40, 000 for training and about 15, 000 for testing. We evaluate every controller

using the same train and test set.

Puffer Platform. We test Gelato with both random sampling and Plume on the live streaming

platform Puffer from 01 Oct 2022 - 01 Oct 2023. The Puffer platform streams live TV channels such

as ABC, NBC or CBS over the wide-area Internet to more than 280, 000 users [2, 65]. Over this

time, we analyzed the ABR algorithms streamed over 58.9 stream-years of video. We report the

performance as SSIM vs. stall ratio, following the convention used by the Puffer platform [65].

We compare Gelato-Random and Gelato-Plume-Static with the performance of the Buffer-based

controller BBA [24], the classical planning controller MPC [67], Puffer optimized versions of

the BOLA, v1 and v2 [3, 56], the in-situ continuous training controller Fugu’s February version,

Fugu-Feb [65], and CausalSim [10], a version of Bola tuned by trace-driven causal simulation.

6.3 Results
In this section, we present the results of our experiments in simulated and real-world ABR.

In Fig. 6, we present our results evaluating Plume. We present our observations below.

Plume outperforms random trace sampling in both simulation and real-world testing.
In Figures 6a and 6d, we analyze the performance of Plume across training progress. We observe

that Plume converges to a higher normalized QoE (defined as the reward in § 5), in both all traces

and slow traces. We additionally see that Pensieve-Plume-Dynamic significantly improves upon

Pensieve-Random, but that the improvement is not enough to match the performance of Gelato.

In Fig. 6b and Fig. 6e, we benchmark the trained RL controllers with classical controllers. Due to

ABR’s tail-end nature, we also add random bitrate selection as a baseline for visualization. We find

Plume to outperform random trace sampling and the classical controllers BBA, MPC, and Bola. We

note that while the numerical differences may appear small due to the inherent scale of the metrics,

they exceed the 95% confidence interval bands, and translate to large real-world differences as we

will see.

Plume-Static closely tracks Plume-Dynamic. In Figs. 6a, 6d, we observe that Plume-Static,

which employed a simpler prioritization strategy, closely tracks the performance of Plume-Dynamic.

This is likely due to the fact that in these scenarios, the impact of shifting reward-to-go values

or difficult input traces is minimal. However, as we will see later in Sec. 7, when the training

distribution is anomalous or is significantly different from the testing distribution, Plume-Dynamic

can prove effective over Plume-Static.

Gelato outperforms state-of-the-art controllers in the real world streaming live television
over a 1-year period. To further understand the benefit of Plume, we run Gelato with Plume-Static

and random sampling on the real-world live-streaming Puffer platform [65]. We opted for Gelato
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(a) RL Training:
All traces

(b) Simulation:
All traces

(c) Real-World Streaming:
All traces

(d) RL Training:
Slow traces (< 0.75Mbps)

(e) Simulation:
Slow traces (< 0.75 Mbps)

(f) Real-World Streaming:
Slow traces (< 0.75Mbps)

Fig. 6. Plume performance over Simulation and Real-World Streaming: Plume surpasses random
sampling in both controlled simulation-based experiments and in real-world settings. The simulation and
training plots measure the QoE of the client, defined as reward in Sec. 5. Real-world Streaming plots are
based on data from Puffer streams (Oct ’22-Oct ’23), aggregating over 58.9 stream-years. Data is re-plotted
from its site [2] to combine different experiment periods. Error bars and bands show 95% confidence intervals.
Plot axes vary due to differing objective scales.

combined with Plume-Static for this evaluation given its analogous performance to Plume-Dynamic

in ABR, but with a simpler design. Additionally, we included Gelato with random sampling as a

baseline for comparative analysis. In Figures 6c and 6f, we see that Gelato-Plume-Static outperforms

the current state-of-the-art controllers Fugu-Feb and CausalSim, alongside the heuristic-based

BBA in both SSIM and stalling. Although prior work [10, 65] reported statistically significant

stalling improvements on Puffer, Gelato distinguishes itself by becoming the first ABR controller to

achieve statistically significant improvements in both quality and stall reduction. This is particularly

noteworthy as Gelato does not depend on low-level TCP metrics like Fugu or intricate simulation

techniques that CausalSim uses.

Over this 1 year period, the algorithms streamed over 58.9 stream-years of videos to over 280, 000

viewers across the Internet [2, 65]. Over this duration, Gelato-Plume-Static achieves 75%, 78% and

81% stall reduction compared to CausalSim, Fugu and BBA respectively (Fig. 6c). Gelato-Plume-

Static additionally achieves SSIM improvements of 0.28, 0.12 and 0.15 dB over CausalSim, Fugu and

BBA respectively. This quality improvement over BBA is more than 5× that of Fugu, which only

managed a 0.03 dB improvement over BBA. CausalSim did not provide an SSIM improvement over

BBA over this period. Gelato-Plume-Static has an average SSIM variation of 0.77 dB, compared to
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0.67, 0.53 and 0.78 dB of CausalSim, Fugu and BBA respectively. Moreover, we find that Gelato-

Random is a strong baseline, achieving 0.27 dB SSIM improvement and 45% stall reduction over

CausalSim.

7 GENERALIZATION
Having established the performance of Plume on real-world controllers and experiments in Section 6,

in this section, we thoroughly microbenchmark Plume to study its generalizability across the

distribution of traces used in ABR, as well as across other networking applications.

7.1 Settings
7.1.1 Generalization across input trace distributions: TraceBench. To assess Plume’s generalizability

across various input trace distributions and not just the one given by the users of Puffer, we introduce

a controlled ABR environment, TraceBench. TraceBench implements two principal modifications

to the standard ABR setting: simplifying quality-of-experience measurement to quality and stalling,

and parameterizing traces by real-world trace attributes: mean and variance of network throughput.

These changes enable comprehensive controller evaluation under diverse network conditions.

Although a simplification, TraceBench closely approximates a broad spectrum of realistic scenarios.

Note that parameterized trace generation, integral to TraceBench for creating varied scenarios, is

not a component of the prioritization strategies themselves. For TraceBench traces, we focus on

two mean throughput levels, slow and fast, and two throughput variance levels, high and low. We

create three dataset sets with different trace proportions: Majority Fast, Balanced, and Majority

Slow. Example trace visualizations are in Fig. 12 (Appx. C).

7.1.2 Generalization across networking applications: congestion control and load balancing.
Congestion Control. Congestion Control (CC) algorithms are responsible for determining the

most suitable transmission rate for data transfer over a shared network. Based on network signals

such as round-trip time between the sender and receiver and the loss rate of packets, a CC algorithm

estimates sending rate that maximizes throughput and minimizes loss and delay. We evaluate Plume

in CC by extending the code of Aurora [26]. Here, each trace is represented by 4 key simulation

parameters: throughput, latency, maximum queue size, and loss. For training, we sample throughput

from range [100, 500] packets per second, latency from [50, 300] milliseconds, max queue size from

[2, 50] packets, and loss rate from [0, 2] percent. For testing, we broaden the ranges and sample

throughput from [50, 1000], latency from [25, 500], max queue size from [2, 75], and loss from [0, 3].
We sample latency uniformly evenly in the range, while sampling the rest evenly on a geometric

progression. We note that we do this sampling only once and fix it for both training and testing.

Load Balancing. A Load Balancing (LB) algorithm in a distributed cluster decides which server to

serve a new job at, such as to minimize the job’s total processing time. When a job arrives, the LB

algorithm does not know how busy each server is or how long each server will take to process

the job. To make a good decision, it uses data such as the time between job arrivals, the duration

of past jobs, and the number of jobs already waiting at each server. To evaluate, we use the Park

Project [37]’s implementation. Each trace represents a time series indicating the size of arriving jobs

over time. Following standard parameters, the inter-arrival times are sampled from the exponential

distribution 𝑒𝑥𝑝 (𝜆 = 55), and the job sizes from the pareto distribution 𝑝𝑎𝑟𝑒𝑡𝑜 (𝑥𝑚 = 1.5, 𝛼 = 100).
We limit the trace length to 650 to ensure that the variance of returns 𝐺 is finite. As in congestion

control, we perform this sampling once and fix it for both training and testing.

Further details on these settings are in Appendices C, D and E.
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(a) Scenario 1: Training on Major-
ity Fast, Testing on Majority Slow
dataset.

(b) Scenario 2: Training and Testing
on the Balanced dataset.

(c) Scenario 3: Training on Major-
ity Slow, Testing on Majority Fast
dataset.

Fig. 7. Benchmarking Plume across Trace Distributions: We benchmark prioritization techniques across
different training and testing trace distributions. Plume-Dynamic provides generalizable performance im-
provement, beating the others in scenarios (1), (2) and (3). 95% confidence interval shown as error bands.

Fig. 8. Performance of Plume in congestion control.
95% confidence interval shown as error bands.

Fig. 9. Performance of Plume in Load Balancing. 95%
confidence interval shown as error bands.

7.2 Results
Our experiments investigate two important questions. First, we investigate how the versions of

Plume, Plume-Static and Plume-Dynamic generalize generalize to other network distributions in

ABR, which can be possible in real-world settings. Second, we evaluate how Plume generalizes to

other networking applications, congestion control and load balancing.

In Figure 7, we analyze the performance of Plume across various trace distributions. Particularly,

• Scenario 1: The training distribution is similar to the real world but the testing is adversarially

different, i.e., we train on the Majority Fast but test on the Majority Slow dataset.

• Scenario 2: Both training and testing have a balanced set of traces, i.e., we train and test on the

Balanced dataset.

• Scenario 3: The training distribution largely consists of the tail end of the testing distribution,

i.e., we train on the Majority Slow but test on the Majority Fast dataset.

Plume outperforms random sampling regardless of trace distribution. As we observe in
Figures 7a and 7b for the QoE for scenarios (1) and (2), Plume-Dynamic provides a significant
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performance improvement over random sampling. Moreover, even in Figure 7c for scenario (3),

where we may least expect prioritization to help, Plume-Dynamic is still better than random

sampling. We additionally observe that Plume-Static, which performs well in scenario (1), falls

behind Plume-Dynamic in scenarios (2) and (3) where the training input trace distributions are

either anomalous or are dramatically different from the testing distribution. To better understand

how PTS so effectively generalizes across all of these trace distributions, we visualize the selection

weight of different traces during training in Fig. 10 in Appx. A.3.

Controllers trained with Plume are robust to trace distribution shifts. In the second row of

plots in Figures 7a, 7b and 7c, we visualize the slow trace performance of different prioritization

schemes. We observe that random trace sampling’s performance in slow traces is largely dependent

on its training dataset. If the training dataset had few slow traces, as in scenario (1), the performance

is significantly worse than it is in scenario (3), where it had many. However, Plume-Dynamic’s

performance is robust to the training trace distribution: the controllers all converge to a similar

QoE in all three scenarios. In the ever-changing landscape of users, devices, and infrastructure

inherent to the network domain, this added robustness can be particularly important to reduce the

need for retraining and ultimately the compute and energy requirements of the entire system.

Plume’s performance gains are robust across networking applications. In Fig. 8, we visualize

the performance of Random trace sampling, Plume-Static and Plume-Dynamic across training in

congestion control. Similar to the results for Plume in ABR (§ 6), we observe that Plume converges

to a higher performance, with Plume-Static closely tracking Plume-Dynamic. In Fig. 9, we observe

a similar pattern in load balancing, with Plume also converging to a lower average job completion

time (JCT) than standard random trace sampling.

Below, we summarize the findings of our experiments with ABR, CC and LB presented in Section 6,

and the analysis of our extensive Plume benchmarking presented in this section.

• Plume is a generalized solution for DRL training in adaptive bitrate streaming that automatically

balances the trace distribution, and offers significant improvement in performance over random

sampling in simulation and in real-world testing, over both on-policy and off-policy algorithms.

• Plume’s prioritization strategies work across trace distributions and networking applications,

providing controllers with greater performance and robustness in all.

• Gelato trained with Plume offers the best performance when compared to prior ABR controllers

on the real-world Puffer platform. It achieves 75% and 78% reduction in stalls over CausalSim [10]

and Fugu [65] respectively. It also achieves a statistically significant SSIM improvement of 0.28

dB over CausalSim and 0.12 dB over Fugu.

8 DISCUSSION AND LIMITATIONS
We envision Plume to open a new avenue of research for DRL training. Rather than evolve into

another hyperparameter, the problem of trace sampling lends itself to principled analysis, and a

generalized and broadly applicable solution. However, our work still leaves a gap for future work.

The need for systematic study of input-driven DRL training. Our analysis of Plume highlights

the significant impact of skew and the benefits derived from addressing it. This finding provides

a strong motivation to explore other overlooked factors that may also influence input-driven

DRL training. While the broader ML community has conducted in-depth studies on training

parameters [11], DRL environments [15], and evaluation metrics [8], there is a lack of such research

in the networking domain. Engaging in systematic studies in this front could enable the research

community to better understand the potential of existing solutions and pave way for an empirical

assessment of the real challenges faced by optimized input-driven DRL solutions.

Future direction for Plume. In addition to networking environments, Plume can also be beneficial

in other trace-driven DRL settings such as drone control, autonomous driving, etc. Plume, as we
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presented it, cannot be used directly in such environments with more complex input processes.

However, extensions to Plume as presented in this paper may be an interesting future direction.

Sim2Real Gap. Plume changes which traces get sampled and not how they are simulated. Plume

does not address the problem related to the gap between the simulation environment and the

real-world setting (Sim2Real Gap). Thus, Plume cannot handle the scenario where training traces

are incomplete or have experienced data shift from the runtime environment. Training and runtime

solutions that bring simulation closer to reality can be combined with Plume.

Large-Scale Training. The benefits of higher state-action exploration and feature learning offered

by Plume may diminish with a very deep neural network over a large number of training steps

and parallel environments. Our experimental evidence suggests that Plume is highly relevant for

practical DRL environments and training settings. However, we cannot ascertain the effectiveness

of Plume at the scale of state-of-the-art Go agents [52], which requires training capabilities only

available to large companies.

9 RELATEDWORK
Prioritization in Supervised learning. Class imbalance is frequently a challenge in supervised

data-driven networking problems, where samples of some classes of network conditions or scenarios

occur rarely [16, 31, 34, 69]. A popular technique to address this problem is to oversample or

undersample certain classes to ensure that the model does not drown out the error in the minority

classes [30]. Such techniques cannot be used in reinforcement learning, where the learning happens

using states, actions and rewards rather than a fixed dataset with labels.

Prioritization in DRL. While we present the first systematic methodology of prioritization

of input traces in DRL, prioritization/importance sampling has been applied at other points in

the DRL workflow. PER [51] is used to prioritize transitions in the replay buffer in actor-critic

algorithms [60], in the multi-agent setting [18], and in text-based DRL environments [44] to improve

sample efficiency. Horgan et.al [23] used PER in conjunction with distributed acting to improve

feature learning. Schulman et.al [53, 54] employed importance sampling to reduce variance of

on-policy training. However, as shown in our experiment (§ 3.3), these solutions do not address the

skew in input-driven environments.

DRL for Networking and Systems applications. Following the promise of DRL, a number

of prior works have worked to improve its performance in networking, improving sim2real gap

and efficiency. Gilad et.al. [19] employed RL to find additional training traces to help the DRL

agent generalize to unseen network conditions. Building on this idea, Xia et al. [63] introduced a

systematic Curriculum Learning based approach for the same goal. It introduced the metric Gap-to-
baseline for environment configurations and systematically generated the additional environment

configurations needed for greater generalizaiblity. Both of these techniques addressing sim2real gap

areff tangential to Plume and can be used alongside it. Mao et.al. [39] introduced the algorithm-side

optimization of using input-dependent baselines to reduce the variance of on-policy algorithms

at the policy optimization step. Doubly Robust estimation [27] helps in estimating performance

variations during input-driven evaluation but does not address the skew in learning. These solutions,

addressing various other challenges in DRL, serve as crucial motivation to address the skew

underpinning DRL in adaptive bitrate streaming and can be combined with Plume.

10 CONCLUSION
Practical adoption of DRL-based ABR controllers is limited because the research community does

not fully know how to produce high-performance controllers. We uncover that skew in the input

datasets of DRL controllers plays a significant role in performance, and put forward Plume, a

systematic, generalizable, and high-performant methodology for addressing that skew.
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Fig. 10. Visualization of the prioritization found by Plume-Dynamic in various datasets: The relative
change in sampling weight for each kind of traces over the training. Selecting all kinds of traces at weight 1
is equivalent to random sampling.

A PLUME DETAILS
In this section, we provide details, visualizations, and analysis of the Plume and its three stages.

A.1 Critical Feature Identification
We recall that in the Critical Feature Identification stage, Plume identifies traces by first extracting

a wide range of features and then filtering them to find the critical features.

A wide range of features is extracted for each trace in the dataset of traces. Then, this set

of features goes through our automated filtering process. During this process, about 40% of the

features are eliminated. We start with 16 features, of which 7 describe the central tendency and

9 describe the spread. The features of central tendency include Mean, Quantiles of the 2.5𝑡ℎ ,

5
𝑡ℎ
, and 95

𝑡ℎ
, Truncated mean of 5

𝑡ℎ
, 12.5𝑡ℎ , and 25𝑡ℎ quantiles, and the Spectral Centroid of

the Absolute Fourier Transform Spectrum. The 9 features of the spread are the Ratio of values

beyond 1× and 2.5× standard deviation, Coefficient of Variation, Central approximation of Second

Derivative, Mean Absolute Change truncated beyond the [5
𝑡ℎ
, 95

𝑡ℎ
] and [1.25𝑡ℎ , 98.75𝑡ℎ] quantiles,

and Autocorrelation with lag of 3, 5, and 8.

A.2 Clustering
We recall that in the Clustering stage of Plume, we group similar traces together to attempt to

reduce the complexity of the prioritization problem from a trace-level to a cluster.

We do this by automatically finding both the clustering and the optimal number of features

through a search procedure. In ABR, we search for the number of clusters in the range [6, 15], [3, 7]
in TraceBench, [4, 9] in CC, and in the range [3, 8] in LB.

A.3 Prioritization
We recall that in the Prioritization stage of Plume-Dynamic, we observe the controller’s training

and dynamically prioritize clusters to focus on those with the most to learn from.

Plume-Dynamic effectively adapts to all training trace distribution. To better understand

how Plume-Dynamic so effectively generalizes across all of these trace distributions, we visualize

the sampling weight of different traces during training in Figure 10. We observe that while training

on the Majority Fast dataset, it undersamples the Fast traces and oversamples the Slow ones. In

the Majority Slow dataset, it undersamples the Slow–Low Variance traces while oversampling the

Fast and Slow–High Variance ones. This highlights the power of Plume-Dynamic’s automated

prioritization: It adapts itself to the distribution in each dataset and allows the controller to focus

on clusters with the most to learn from.
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Fig. 11. Performance Plots from the Puffer Platform [2], presenting results from 07 Mar’ 2022—05 Oct’ 2022.
The results visualize 25.5 steam-years of data. Similarly to our main results, we see that Gelato-Plume-Static
(maguro) outperforms all other state-of-the-art ABR controllers in both video quality and stalling and that
Gelato-Random (unagi) improves overall video quality while achieving similar stalling performance.

B ADAPTIVE BITRATE STREAMING DETAILS
In ABR, we introduce the novel controller architecture Gelato.

Gelato’s neural architecture uses frame-stacking with 10 past values for the client data, and 5

future values of chunk sizes and SSIMs at every encoded bitrate. The client data is passed through

a 1D convolution with a kernel size of 3 and 64 filters, followed by another 1D convolution of the

same kernel size and filters. The chunk sizes and SSIMs are each passed through their own 1D

convolution with a kernel size of 5 and 32 filters, each followed by another 1D convolution with

the same kernel size and number of filters. The second layer of convolutions reduces the size of

the resulting output by a factor proportional to the size of the kernel. The resulting features are

concatenated and passed through a policy and a value network each made up of a single hidden

layer of 256 neurons. Note that the value network is not used outside of training. An inference

on Gelato’s neural network takes less than 0.35 ms on average on a core of our 𝑥86 − 64 CPU

server in Python—a minimal per-chunk overhead for Puffer’s 2.002 second chunk duration. To train

Gelato, we use the A2C algorithm [41] using a standard reward normalization strategy [48] and

the training parameters: learning rate of 0.001, 64 parallel envs., 4𝑒8 training steps, 𝑡𝑚𝑎𝑥 of 15, GAE

N-step return of 15, 𝛾 of 0.95, 0..9 value function coefficient, Entropy of [5.75, .0025] annealed over

2𝑒8 steps, and Max Gradient Norm of 0.4.

The off-policy DQN variant of Gelato uses the same architecture, swapping the final policy and

value networks for a single dueling Q-network made up of a single hidden layer of 256 neurons.

We additionally use a standard reward normalization function [48] to normalize the rewards. To

train this variant of Gelato, we use the Ape-X DQN algorthm [23] using the training parameters:

64 actors, 1𝑒9 training steps, learning rate of 7.5𝑒 − 6, replay batch size of 128, 0.95𝛾 , replay buffer

size of 2𝑀 , N-step return of 7 and value clipping between [−32, 32].
We use the Puffer Platform to gather traces for our simulation environment. The traces are

system logs of the video streams—time series that include (i) the chunk sizes and SSIMs at all

bitrates, (ii) the bitrate chosen by the ABR algorithm, and (iii) the time taken to transmit that chunk.

We calculate the effective throughput over time and use it alongside the chunk sizes and SSIMs for

simulation.

We train Pensieve [38] using its original architecture. However, because the original implemen-

tation could only work with the traces provided by the authors, to adapt Pensieve to new traces,

we use the same training environment and DRL parameters as Gelato.

In presenting the results for Gelato in the real world, we re-plot the data found on the Puffer

Platform [65] in Figure 6 in Section 6. In our analysis, we present the data from dates 01 Oct’ 2022

through 01 Oct 2023. However, because the platform was experiencing issues and benchmarking
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Fig. 12. Visualization of Traces generated in TraceBench: A Throughput vs Time plot of example traces
used in TraceBench. The broad coverage of the mean and variance of the throughput requires the agent to
learn to adapt to each kind of trace differently.

other ABR controllers, this data is split across multiple plots. To aggregate the data together, we first

download the pre-processed public data available from the Puffer Website [2]. Second, we follow

the same technique used by the platform and employ a sampling-based approach to estimate the

mean and 95% confidence interval of quality, quality change, and stalling for each ABR algorithm.

We ignore all the days when the platform was under maintenance (such as 16 January 2023) and

days when the platform produced faulty data due to a known bug (such as 21 January 2023).

For completeness, we present the older results from the Puffer Platform in Figure 11 benchmarking

the original version of the Fugu controller, which was taken off the platform on 06 October 2022. In

this plot, we analyze 25.5 stream-years of data, collected from 07 March 2022 through 05 October

2022. We observe that Gelato-Plume-Static still outperforms the state-of-the-art ABR algorithms

in both quality and stalling. This result highlights how Plume can successfully train robust and

high-performant controllers in simulation, even outperforming in-situ trained controllers updated

daily.

C TRACEBENCH DETAILS
In designing TraceBench, our objective is to create an environment to thoroughly evaluate and

validate different prioritization techniques.

We build our environment on top of the standard ABR implementation found in the Park

Project [37]. We allow the client to have a maximum buffer of 15 seconds. We consider traces with

a maximum length of 100 seconds, with chunks of 1 second. The chunk sizes are generated by

sampling a Gaussian distribution around the bitrates [1.0, 3.0, 6.0] megabytes per second.

When generating the traces, we consider two levels of throughput, fast and slow, and two levels

of variance, high-variance and low-variance. When generating a trace, we use a 2-state Markov

model switching between high and low throughput with different switching probabilities for each

kind of trace. In Figure 12, we present a throughput vs. time visualization of each of the four

different kinds of traces.

When training the controllers in TraceBench, we use the state-of-the-art feed-forward DQN

algorithm Ape-X Dqn [23]. We use framestacking of history length 10. We additionally use a

standard reward normalization function [48] to normalize the rewards. We use a simple fully

connected architecture with 2 layers of 256 units. We additionally use the dueling and double DQN

architecture with a hidden fully connected layer of 256 units. We use the training parameters: 4

actors, 4𝑒6 training steps, 32 replay batch size, .975𝛾 , 250000 replay buffer size, N-step return of 7, 𝜖

annealing over 7𝑒5 steps and value clipping between [−32, 32].
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D CONGESTION CONTROL DETAILS
In CC, we train and evaluate Aurora [26] with different prioritization techniques. We use frames-

tacking with a history length of 25. We use a 2-layer fully connected neural architecture with

64 units for both the policy and value function. We additionally use State-Dependent noise for

exploration [50] and reward scaling. We use the algorithm A2C [41] with training parameters:

learning rate of .000125, 16 parallel envs., 5𝑒6 training steps, 𝑡𝑚𝑎𝑥 of 15, GAE N-step return of 15

steps, .975𝛾 , value coefficient of 0.05, entropy of [.1, .005] annealed over interval 2.5𝑒6 steps and

max gradient norm of 0.25.

E LOAD BALANCING DETAILS
In LB, we evaluate different prioritization techniques using standard parameters. We use a 2-layer

fully connected neural architecture with [256, 128] units and GeLU activation [21] for both the

policy and value function. We additionally use reward scaling, and the algorithm PPO [54] with

training parameters: learning rate of 2𝑒 − 4, 16 parallel envs., 5𝑒6 training steps, batch size of 256,

GAE 𝜆 of .975, no advantage normalization, 30 epochs per update, 1𝑒 − 4 value function coefficient,

entropy of [.1, 1𝑒 − 6] annealed over 5𝑒6 steps, clip range of 0.1 and max gradient norm of 0.2.

F IMPLEMENTATION DETAILS
A straightforward implementation of Plume can directly interfere with the various distributed

training paradigms used in many DRL algorithms [23, 41]. To this degree, we implement our

prioritization strategy using the distributed shared object-store paradigm in Ray [43]. This allows

us to share the sampling weights across RL processes without interfering with any DRL workflows.

With our implementation, the overhead for Plume is minimal. The Critical Feature Identification

and clustering stages are completed once before training, with runtimes in the order of minutes.

In Plume-Dynamic, we train a neural network to map the attributes Φ of an input trace to the

return 𝐺𝜋𝜃

in that trace parallel to the training. We maintain a short bounded history of the

trace-return pairs for each category and use this history to compute the two components of our

prioritization function. To compute the first term in our approximation, we take the ground-truth

samples of trace feature-return pairs, measure the mean absolute error of the neural network for

these samples, and average them across each category. To calculate the compensation term, we

take the negative of the mean return found in each category. We do this prioritization process

continuously, adjusting the weights to the controller’s current needs. This dynamic prioritization

calculation adds a computational overhead on the order of milliseconds per iteration. This added

prioritization computation is handled in parallel to the DRL training and does not slow it down.
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